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Abstract

This paper demonstrates how, through the capital reallocation channel, increased automa-

tion in routine occupations has reduced employment and wages in non-routine occupations.

Automation in routine occupations absorbs capital from non-routine occupations, reducing

employment and wages in the latter. This mechanism is referred to as automation cross-

occupation spillovers. Between 1980 and 2010, automation reduced average labor income

by 27%. Cross-occupation spillover is responsible for 62% of this drop. For example, the

increase in automation in the 10% most routine-intensive occupations between 1980 and

2010 reduced average labor income in the 90% least routine-intensive occupations by 2.04%.

Furthermore, I find that automation has contributed to the rise of inequality in the United

States. Indeed, automation accounts for 30.3% of the increase in occupational labor income

inequality between 1980 and 2010.
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Introduction

In this paper, I study the impact of automation on the distribution of wages and em-

ployment across occupations. I demonstrate, in particular, how automation of tasks in an

occupation affects employment and wages, not only in that occupation, but also in other

occupations via reallocation of capital investment across occupations.

To that end, I develop a multi-occupation model of automation and characterize the

optimal allocation of capital across occupations. I then derive analytical expressions for the

marginal impact of automation on the equilibrium distribution of wages and employment

across occupations. For each occupation, these expressions distinguish between the direct

effects of automation of tasks performed in that occupation from the spillovers effects that

arise in equilibrium due to automation of tasks performed in other occupations. Using

comparative statics, I fully characterize automation’s short-run and long-run effects as well

as the transitional dynamics after an increase in the automation of production.

In the short-run, task automation reduces wages and raises the productivity of capital in

the automated occupation. Because aggregate capital is fixed in the short-run, automation

draws capital from other occupations into the automated occupation. As a result, labor

demand falls in the latter reducing wages and employment. The reallocation of capital

towards the automated occupation mitigates the negative effects of automation on labor

demand in that occupation. The net effect is negative because capital inflows are insufficient

to raise labor demand. All else being equal, the direct effect of automation is greater than

the spillover effect, implying that routine occupations are the most affected by automation.

The magnitude of the spillover effect is proportional to the size of the automated occupation.

Indeed, large occupations absorb an exorbitant amount of capital.

In the long-run, automation encourages capital accumulation, which raises labor demand

in all occupations over time. In the new steady state, the level of employment and wages in

the automated occupation and the other occupations are higher than in the short run.

During the transition, the capital stock increases. The main driver of the increase in the
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capital stock is a temporary increase of the interest rate. Although the interest rate at the

two steady states is equal to the discount rate, it rises sharply in the short run and then

falls back to the level of the discount rate during the transition. The rise in the interest rate

is driven by the fact that automation increases capital productivity, implying an increase in

capital demand. The increase in the interest rate encourages households to increase their

savings. The dispersion of wages and employment increases along the transition. Indeed,

employment and wages rise faster in occupations with relatively high labor productivity.

In Section 3, I provide a quantitative assessment of the effect of automation on wages

and employment across occupations. I begin by calibrating the model to the United States

in 2010 using data from the America Community Survey. For each occupation, I define

the potential automation risk by that occupation’s content of routine tasks. Assuming

that actual level of automation in each occupation is proportional to its potential level,

I determine the level of automation by calibrating it to match the aggregate labor share

in 2010 in the US. In the benchmark economy, the level of employment and wages in an

occupation declines with its routine share as in the data.

Next, I simulate the 1980s US economy, by reducing the level of automation so that

the aggregate labor share matches its value in 1980. Comparing the simulated equilibria in

1980 and 2010, I find that automation has reduced average labor income by 27%. Spillovers

effects of automation across occupations is responsible for 62% of this drop. For illustration,

between 1980 and 2010, the increase in automation in the ten percent most routine-intensive

occupations reduced average labor income in the 90% least routine-intensive occupations by

2.04%.

I find that automation has contributed to the rise of inequality in the United States.

Indeed, between 1980 and 2010, automation contributed by 30.3% to the increase in occu-

pational labor income inequality. Although the spillovers exacerbate the fall in average labor

income caused by automation, they lessen the impact of automation on inequality. In other

words, if spillovers had not occurred, the increase in inequality would have been greater.

3



According to conventional wisdom, some workers (i.e those operating in routine occu-

pations) are highly vulnerable to the consequences of new technologies, while others are

relatively unscathed. In this regard, Frey and Osborne (2013) and Manyika (2017) esti-

mate that 47 to 50% of US workers are at risk of automation. However, once spillovers are

taken into account, one can see that the entire workforce is vulnerable. Especially, increased

automation in routine occupations reduces employment and wages in manual and abstract

occupations.

Cross-occupation spillover is a novel effect of automation on the labor market that the

paper adds to the literature. The automation effects known in the literature, are the produc-

tivity effect and the displacement effect. The former stems from the fact that automation

lowers the cost, which raises the level of production and, as a result, the factors demand

(Acemoglu and Restrepo (2018a)). The displacement effect is caused by the fact that new

machines will replace workers in certain tasks (Acemoglu and Restrepo (2021)).

There has been discussion about how automation will affect employment, wages, and

overall stability. So far, the literature has reached opposing conclusions. On the one hand,

Acemoglu et al. (2020), Acemoglu and Restrepo (2019), Acemoglu and Restrepo (2018b),

and Bessen et al. (2019) conclude that automation has a negative impact. On the other

hand, Autor (2015), Graetz and Michaels (2018) conclude that automation has a positive

impact. This paper shows how automation causes negative spillovers through the capital

reallocation mechanism. This is, to the best of my knowledge, the first paper that addresses

automation cross-occupation spillovers.

The paper is also related to the wage polarization literature, which emphasizes the dis-

proportionate effect of technical change among workers Autor (2014). Autor (2015) and

Autor and Dorn (2013) show that routine occupation workers have been hit the hardest by

increased automation. In this paper, I show that, while routine occupations are the hardest

hit by automation, non-routine occupation workers are not immune to automation because

of spillovers. Without cross-occupation spillovers, wage polarization would have been even
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more pronounced.

The paper is divided into four sections. The first section describes the multi-occupation

model of automation. The second section solves the model equilibrium, presents an anal-

ysis of comparative statics with respect to automation in the short and the long run, and

characterizes the transitions. The third section calibrates the model parameters to the US

economy, and quantifies the effect of cross-occupation spillovers on the change in employment

and wages attributable to automation. Section four concludes.

1. A Multi-Occupation Model of Automation

Occupations are diverse in terms of their automatable task content. Some occupations,

are routine task intensive and thus highly automatable, whereas others are not. To account

for this heterogeneity, I extend the task-based model of automation presented in Acemoglu

and Restrepo (2018b), Zeira (1998), Acemoglu and Autor (2011) to multiple occupations.

The model is in continuous time, with heterogeneous households and a representative pro-

ducer who manufactures the final good using the services of all occupations.

1.1. Preferences

There are n types of households in the economy, each type is endowed with labor skills

that are specific to an occupation. The representative household of type i, i ∈ {1, 2, ..., n},

denoted by Hi, only provides labor to occupation i. The household Hi lifetime utility

function is given by: ∫ ∞
0

e−ρt
(
ci (t) e−τli(t)

)1−θ

1− θ
dt (1)

where ci(t), and li(t) denote the household’s consumption and labor supply, and ρ denotes the

discount rate between 0 and 1. θ is the inverse of the intertemporal elasticity of substitution.

The utility function’s concavity requires that θ > 1. τ > 0 represents the distaste for work1.

1 According to the hedonic wage theory, some occupations are more difficult to perform than others, so
leisure tastes should be heterogeneous, in the sense that it is higher for difficult occupations than for others.
(see Cahuc et al. (2014))
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I assume that the marginal disutilities of work are the same across occupations.

The household maximizes her lifetime utility function, by selecting her consumption and

labor for each period of time subject to the following budget constraint.

ȧi (t) = wi (t) li (t) +R (t) ai (t)− ci (t) , (2)

where ai (t) denotes the household wealth at time t, and is positive; wi is the wage rate in

occupation i, and R (t) is the interest rate on capital. The formal problem of the households

is the following.

max
{ci(t),ai(t),li(t)}t≥0

∫ ∞
0

e−ρt
(
ci (t) e−τli(t)

)1−θ

1− θ
dt

s.t.

ȧi (t) = wi (t) li (t) +R (t) ai (t)− ci (t)

1.2. Production

In the economy, there are n occupations that provide intermediary services. The pro-

duction function of the gross output is a Cobb-Douglas aggregate of the output produced

by the occupations. This implies that the elasticity of substitution between occupations is

unity. Appendix D discusses the implications of a CES production function.

Y (t) =
n∏
i=1

yi(t)
αi (3)

Y (t) is the gross output, and yi(t) denotes the output of occupation i. n occupations generate

gross output, each with a share αi, and
∑n

i=1 αi = 1. Unlike industries, the outputs of

occupations are intermediate goods rather than final goods.

The production within an occupation yi(t) is carried out through a series of tasks x with

measure one. Occupations necessitate the use of two types of factors: automation capital

and labor. The automation capital operates in routine tasks that engineers are capable of

6



automating, while labor operates in the remaining tasks. Let’s denote by ηi the proportion

of automated tasks. Task x’s output is formalized as follow:

yix(t) =


γilix(t) + kix(t), if x ∈ [0, ηi]

γilix(t), if x ∈ (ηi, 1]

(4)

where kix(t), and lix(t) are respectively the automation capital, and labor used in the task

x. γi denotes the productivity of labor in occupation i and yix is the output of task x of

occupation i.

Automation capital is homogeneous and can be transferred between occupations. Several

examples show that capital mobility exists across occupations. First, the centralised financial

market provides funds for the purchase of automating machines. These funds are divided

among various occupations. When automation occurs, redistribution is readjusted. Second,

electronic devices such as computers, telephones, and robots can be converted to perform

different types of task. This assumption is the mainstay of the model. Labor, on the other

hand, is occupation specific.

The producer minimizes the total production costs conditional on the level of output

Y (t). More formally

min
{li(t),ki(t)}ni=1

n∑
i=1

wi(t)li(t) +R(t)ki(t)

s.t.
n∏
i=1

(∫
yix(t)dx

)αi
≥ Y (t)

where li(t) =
∫
lix(t)dx and ki =

∫
kix(t)dx.

This problem can be divided into two simpler subproblems. The first is to calculate the

prices pi for the occupations, which are defined as the lowest cost of producing one unit of
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output of occupation i.

pi(t) = min
li(t),ki(t)

{
wi(t)li(t) +R(t)ki(t) such that

∫
yix(t)dx = 1

}

The second subproblem is to determine the optimal occupational output in order to minimize

the total cost.

{yi(t)}ni=1 = argmin
y1(t),...,yn(t)

{
n∑
i=1

pi(t)yi(t) such that
n∏
i=1

yi(t)
αi = Y (t)

}

1.3. Equilibrium

Let {ηi}, i ∈ {1, 2, ..., n} be the distribution of automation, and K(0) the initial capital

stock. An equilibrium is a set of factor prices {wi(t), R(t)}, i ∈ {1, 2, ..., n}, the aggregate

output Y (t), a stock of capital K(t) s.t.

(i) For all i, ki(t), and li(t) are allocated in a cost minimizing way to produce yi(t) given

the factor prices. The occupation i price pi(t) denotes the minimum cost of producing

one unit of yi(t).

(ii) {yi(t)}, i ∈ {1, 2, ..., n} are allocated in a cost minimizing way to produce Y (t), given

occupation prices {pi(t)}, i ∈ {1, 2, ..., n}.

(iii) For all i, ai(t), ci(t) and li(t) maximize household Hi utility, given wi(t) and R(t).

(iv) Capital market clears
n∑
i=1

ζiai(t) = K(t) =
N∑
i=1

ki(t) (5)

where ζi is the weight of Hi in the economy.

The model provides the distribution of automation and the initial stock of capital ex-

ogenously. The condition in equation (5) represents the aggregate capital market clearing
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condition. Because capital is homogeneous and flows across occupations, the capital mar-

ket clears at the aggregate level. The aggregate capital supply is represented on the left

hand side of equation (5). It is the weighted sum of each representative household’s savings.

Indeed, Hi represents the workers in occupation i, and the number of workers varies by

occupation.

Because labor is occupation specific, the labor market clears at the occupation level. It

is represented by li, the equilibrium employment that solves both the household and the

producer problems.

A steady state equilibrium is one in which factor quantities and prices remain constant

over time.

2. Model Analysis

In this section, I derive the equilibrium quantities and prices, characterize the steady

state equilibrium, and compute the comparative statics with respect to automation in the

short and long run.

2.1. Factors Behavior

Given the definition of the production function in the specific task of an occupation,

as stated in equation (4), the production of intermediate goods yi has the following Cobb

Douglas form.

yi(t) =

(
ki(t)

ηi

)ηi (γili(t)
1− ηi

)1−ηi
(6)

Proof 1. See Acemoglu and Restrepo (2018b)

Automation boosts capital productivity while decreasing labor share. Factors demands in

occupation i are given by

ki(t) = ηi

(
wi(t)

R(t)

)1−ηi
yi(t)
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li(t) = (1− ηi)
(
R(t)

wi(t)

)ηi
yi(t)

When the cost of automation capital falls or the cost of labor rises, the demand for automa-

tion capital rises. It may also rise as a result of an increase in gross output. pi(t), as defined

above has the following expression:

pi(t) = R(t)ηiwi(t)
1−ηi

Given the distribution of occupation prices, the optimal demand of intermediate good yi(t)

for a given level of aggregate production Y (t) is

yi(t) =
n∏
k=1

(
αi
αk

pk(t)

pi(t)

)αk
Y (t)

The demand for factors are used to determine capital allocation across occupations, for a

given stock of capital.

The capital is more productive in occupations where the proportion of automated tasks

is higher. However, as more capital is allocated, productivity falls. As a result, once the

aggregate stock is determined, the producer has only one scheme for distributing capital

across occupations. Proposition 1 presents that capital allocation strategy.

Proposition 1. Let K(t) denote the total stock of automating capital available to the pro-
ducer. The optimal allocation of capital is such that

ki(t) =
αiηi
η̄
K(t) (7)

where η̄ =
∑n

i=1 αiηi, is the aggregate automation.

Proof 2. See Appendix A.1

Occupations receive a fraction of the total capital according to the factor shares within

the occupations, and the occupations shares in the aggregate output. The capital allotted

is proportional to the proportion of automated tasks. This analysis supports Autor and
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Dorn (2013) finding that routine-intensive occupations use more computers than any other

occupation. Proposition 1 sheds light on the source of the spillovers, namely the capital

reallocation. Increased automation in one occupation reduces capital available for other

occupations, the labor demand declines in the latter because the capital is scarcer. One

corollary of the latter proposition is that the aggregate production is a functional of the

stock of automating capital.

Corollary 1.

Y (t) = AK(t)η̄
n∏
i=1

li(t)
αi(1−ηi) (8)

where A =

∏n
i=1

(
α
ηi
i
γ

1−ηi
i

(1−ηi)
1−ηi

)αi
η̄η̄

is the aggregate TFP

Thus, the framework features a standard Cobb-Douglas production function, with the capital

share equals to the aggregate automation. Corollary 1 implies that automation reduces labor

share.

Next, I investigate the existence and uniqueness of the steady state equilibrium. I char-

acterize the steady state by equations that give the factor prices and the capital stock. Let

Λ0(.) be the Lambert function, also known as the omega function or product logarithm2.

Proposition 2 states the existence and uniqueness of the steady state.

Proposition 2. The steady state equilibrium exists, it is unique, and characterized by the
following equations

R = ρ (9)∑
i

ζiφgi
Λ0 (φgiK)

= ρ+
∑
i

ζigi (10)

wi =
φτgiK

Λ0 (φgiK)
(11)

li =
Λ0 (φgiK)

φτ
(12)

where gi = αi(1−ηi)
η̄

R and φ = θ−1
θ

2The Lambert function is commonly denoted as W0. To prevent any confusion with the wage, I name it
otherwise. The Lambert function is the inverse function of xex.
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Proof 3. see Appendix B

Equations (9) to (12) characterize the quantities and prices of factors at the steady state.

Equation (9) gives the level of the interest rate. The interest rate must equal the discount

rate to rule out the intertemporal labor supply tradeoff. The capital function is represented

by equation (10). This equation admits a single solution in K, which is the steady-state

level of the capital stock. Equations (11) and (12) are respectively the level of wages and

employment as a function of the stock of capital.

2.2. Effects of Automation

The following exercise consists in disentangling the short and long run spillovers of au-

tomation by decomposing wages and employment into their respective components. The

short-term automation effect is caused by increased automation while capital remains con-

stant. The capital stock is completely flexible in the long run.

2.2.1. Short Run Effect of Automation

The following proposition computes the short-term automation effects in a more com-

prehensive manner, regardless of household preferences.

Proposition 3. Let εi denote the elasticity of labor supply in occupation i. Then

∂ logwi
∂ηi

= − 1

1 + εi

(
αi
η̄

+
1

1− ηi

)
(13)

∂ log li
∂ηi

= − εi
1 + εi

(
αi
η̄

+
1

1− ηi

)
(14)

∂ logwj
∂ηi

= − 1

1 + εj

(
αi
η̄

)
(15)

∂ log lj
∂ηi

= − εj
1 + εj

(
αi
η̄

)
(16)

Proof 4. See Appendix A.3

Equations (13) and (14) are the direct effect of automation , namely, the change in wages

and employment of a given occupation subsequent to the rise of the automation of the same

12



occupation. Equations (15) and (16) represent the cross-occupation spillovers. Indeed wages

and employment in occupation j fall as automation in occupation i increases. Two observa-

tions can be drawn from the proposition. First, cross-occupation spillovers have a negative

sign because automated occupations absorb capital from the other occupations. Second,

because larger occupations absorb more capital, cross-occupation spillovers are primarily

determined by the size of the automated occupation. Automation increases the capital pro-

ductivity of the automated occupation. The capital market reallocates capital in accordance

with Proposition 1. A lower fraction of capital goes to the other occupations, resulting in

lower labor demand.

Proposition 4. The short run automation effect is characterized by

d lnwi = −Ωi

(
ΘSR +

1

1− ηi
dηi

)
(17)

li =
1

φτ
ln
(wi
τ

)
(18)

where Ωi = Λ0(φgiK)
1+Λ0(φgiK)

, and ΘSR =
∑

j
αj
η̄

dηj

Equation (17) is the wage decomposition equation. Cross-occupation spillovers are distin-

guished by the factor ΘSR. Indeed, it reflects the fact that increased automation of one

occupation affects all occupations. The size of occupations experiencing increased automa-

tion magnifies the spillover effect. Indeed, when a large-scale occupation is automated, the

latter absorbs an inordinate amount of capital from other occupations, resulting in a sig-

nificant decline in employment and wages. Equation (18) demonstrates that the wage and

employment decompositions are similar. In occupations where supply is inelastic, automa-

tion’s effect is reflected relatively more on the wage rate.

2.2.2. Long Run Effect of Automation

In contrast to the short run, long run automation accounts for changes in the capital

stock. The economy shifts from one steady state to another with a higher capital stock as
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a result of automation. Indeed, the total derivative of the stock of capital is given by the

following.

dK

K
=
∑
i

αi
η̄

(Π + ρΠi) dηi (19)

where Πj =
ζi

(
1− φ

Λ0(φgiK)+1

)
∑
i ζi

φgi
Λ0(φgiK)(Λ0(φgiK)+1)

, and Π =
∑

i Πigi. Equation (19) is derived from the

capital stock equation in Proposition 2. It depicts the rate of change in the total capital

stock as a result of increased automation at the steady state. Because the quantities Πj are

positive (φ < 1), the capital variation rate is positive.

Lemma 1. Automation increases the total stock of capital

Automation increases the total capital stock. This is made possible by increased productivity

and higher returns on investment. The following proposition provides the long-term effect

of automation after accounting for changes in the capital stock.

Proposition 5. Long run automation effect is characterized by

d lnwi = −Ωi

(
ΘLR +

1

1− ηi
dηi

)
where ΘLR =

∑
j αj

1−Π−ρΠj
η̄

dηj

The quantity ΘLR represents the long-term cross-occupation spillovers. Indeed, it shows

that a change in automation in a given occupation affects all occupations. The long run

spillover effect is mitigated because of the increase in the stock of capital.

ΘLR < ΘSR

In the case where ΘLR is positive, the long run spillover effect is negative as well as the short

run, but the magnitude is smaller. if ΘLR is negative, then the long rung spillover effect is

positive. In that case, the increase in capital cancels out the negative short-run spillover

effect.
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2.3. Transition Between States

The preceding analysis is a comparison of steady states. As a result of increased automa-

tion, the economy shifts from one steady state to another with more capital. The transition

of the economy between the two steady states subsequent to a change in automation is

represented by the following equations.

K̇(t)

K(t)
=
∑
i

ζi

(
1− φ

Λ0(φλ(t)gi(t)K(t))

)
gi(t) +R(t) (20)

µ̇ (t)

µ (t)
= ρ−R (t) (21)

R(t) = Aη̄
∏(

Λ0 (φλ(t)gi(t)K(t))

φτK(t)

)αi(1−ηi)
(22)

λ(t) = µ
1
θ (t)

gi(t) =
αi(1− ηi)

η̄
R(t)

Equation (20) represents capital motion as derived from household budget constraints. Equa-

tion (21) is the Euler equation. It represents the optimal dynamic behavior of the household.

The interest rate in equation (22) is equal to the marginal production of capital.

Prior to the increase in automation, the interest rate equals the discount rate because the

economy is in a steady state. Subsequent to automation, the interest rate rises. The increase

in the interest rate is caused by the fact that automation increases capital productivity and

thus capital demand. However, because the capital supply is inelastic in the short run,

households are unable to increase their capital supply. The rise in the interest rates that

follows the rise in automation provides an incentive for households to increase their savings.

The process results in a gradual increase in the capital stock. However, as the capital supply

expands, the interest rate falls, slowing down the expansion of the capital supply. When

the interest rate falls to the steady-state value, the capital accumulation comes to an end

and the economy reaches a new steady state. In the new steady state the level of capital is
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higher.

Next, I study the distribution of wages and employment along the transition path.

wi(t) ≥ wj(t) ⇐⇒ αi (1− ηi) ≥ αj (1− ηj) ,∀i, j (23)

Similarly,

li(t) ≥ lj(t) ⇐⇒ αi (1− ηi) ≥ αj (1− ηj) ,∀i, j (24)

The distributions of wages and employment are determined by the labor share of each

occupation (the labor share is the product of the occupation share in the aggregate economy

and the labor share within the occupation). In other words, employment and wages are

higher in occupations with higher labor share.

∂2wi(t)

∂gi(t)∂K(t)
=
φτ
(
Λ0 (φgi(t)K(t))2 + Λ0 (φgi(t)K(t)) + 1

)
(Λ0 (φgi(t)K(t)) + 1)3 > 0,∀i ∈ {1, 2, ..., n} (25)

∂2li(t)

∂gi(t)∂K(t)
=

Λ0 (φgi(t)K(t))

τφgi(t)K(t)(Λ0 (φgi(t)K(t)) + 1)3 > 0,∀i ∈ {1, 2, ..., n} (26)

Equations (25) and (26) show that the dispersion of employment and wages increases along

the transition path. Indeed, employment and wage growth are faster in occupations with

higher employment and wages.

3. Quantitative Analysis

In this section, I calibrate the model parameters to the 2010 US economy, then I com-

pute the change in wages and employment due to automation between 1980 and 2010 and

decompose this change into the various effects of automation. I also calculate the increase

in occupational labor income inequality as a result of automation.
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3.1. Data

The analysis is conducted by using two types of data. The first is IPUMS files of Amer-

ican Community Survey data on wages and employment from the 1980 and 2010 censuses.

Workers in the sample are civilians aged from 16 to 64. Employment is calculated using

full-time full-year equivalent workers. The second type is data on occupations tasks input

of Autor and Dorn (2013).

Following Autor (2015), I classify occupational tasks into three categories: manual, rou-

tine, and abstract. Abstract tasks are difficult to computerize because they necessitate cre-

ativity, intuition, and other cognitive abilities. Manual tasks necessitate situational aware-

ness, visual and language recognition, and face-to-face interaction. Finally, routine tasks

are explicit and codifiable tasks (Autor (2015)). The routine share of an occupation (RSi)

is the proportion of routine tasks within an occupation i and is calculated as follows.

RSi =
TRi

TRi + TMi + TAi
(27)

where TRi , TMi , and TAi represent routine, manual, and abstract input of occupation i,

respectively.

Figure 1 depicts the employment share and wages with respect to RS. The RS spectrum,

represented in the x axis, ranges from the least routine-intensive (i.e. the manual occupations

such as services, the abstract occupations such as professionals technicians managers etc.)

at the bottom to the most routine-intensive at the top. Routine-intensive occupations are

those that have a high RS and are easily automatable. The employment share decreases with

the RS, as shown in the left panel of Figure 1. Furthermore, the shares of routine-intensive

occupations decrease over time, while the shares of non-routine occupations increase. The

use of robotics and artificial intelligence is increasing exponentially, and it is taking over more

and more jobs of low-skilled workers, who mostly work in routine-intensive occupations.

Similarly, the right panel follows the same pattern as the employment share. Indeed,
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Figure 1: Occupational employment share and wages of 1980 and 2010
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Note: ACS data in 1980 and 2010. The occupations are represented on the
x axis by the level of their routine shares. The routine shares are computed
using occupation tasks input from Autor and Dorn (2013) using equation (27).
The curves are smoothed with the stata lowess function with a bandwidth of
0.75.

wage levels are falling as RS rises. However, the relationship is positive at the bottom of

the RS spectrum. This is because the RS of manual occupations is lower than the RS of

abstract occupations, but the wage level for abstract occupations is higher. However, in

general, the relationship is negative because automation has a negative impact on wages.

3.2. Calibration

I assume the following linear relationship to calibrate the automation parameters:

ηi = ιRSi

where ι represents the automation intensity. The assumption is that automation is pro-

portional to RS. ι is calibrated to target the aggregate labor share. Indeed, as shown in

Corollary 1 the aggregate automation represents the capital share in the model. Therefore

the aggregate labor share of the model is 1− ι
∑n

i=1 αiRSi. The parameters αi are expressed
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Table 1: Calibration summary

Description Value Target/Identification Data Model

Preferences
ρ Discount rate 0.04 Real interest rate=4% (Kaymak and

Schott (2019))
ζ Weights of house-

holds
vector Employment share

θ Inverse IES 3 Moll et al. (2019)
τ taste for leisure 0.99 mean of wages normalized to 1

Technology

RS Routine shares vector RS = TR

TR+TM+TA
where TR is rou-

tine task input, TM is manual task
input and TA is abstract task input
from Autor and Dorn

α Occupations
share

vector αi =
wili
1−ηi∑n
i=1

wili
1−ηi

ι Automation
intensity

0.9 Labor share in 2010 0.57 0.57

in terms of the observables and automation-related parameters in the following equation

αi =
wili

1−ιRSi∑n
i=1

wili
1−ιRSi

(28)

Proof 5. See Appendix C

The discount rate is set to the value of the long-term interest rate as suggested by Proposition

2. The value of the interest rate equals 4% (Kaymak and Schott (2019)). The weights of

the households ζ are measured by the employment share. The parameter τ is set so that

the average wage equals one. θ, the inverse of the intertemporal elasticity of substitution is

set to 3 (Moll et al. (2019)). Table 1 contains the summary of the calibration results.

Figure 2 compares the employment shares in the model with the data. Although the

employment share is not targeted, the model-to-data fit is satisfactory. Indeed, the model

reproduces the main pattern of the employment share.
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Figure 2: Model vs Data employment share
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Note: The employment data is smoothed with the stata
lowess function and a bandwith of 0.75.

As mentioned in the previous section, increased automation of a large occupation implies

a larger spillover effect than increased automation of a smaller occupation, all else being

equal. Figure 3 depicts the size of the occupations with respect to RS (i.e. the size of the

occupations are represented by the occupations shares αi). The occupations shares decrease

in the first two tertiles of the RS distribution, but increase in the last tertile. It implies

that the most routine-intensive occupations have relatively significant size in the economy.

When this is combined with the fact that routine-intensive occupations are experiencing the

fastest increase in automation, the magnitude of the spillovers is significant.

3.3. Counterfactual Analysis

In this subsection, I simulate a counterfactual economy that has a lower automation

intensity. The calibrated model presented in the previous section serves as the benchmark.

The counterfactual is the calibrated model as the benchmark, except for the automation

intensity. The counterfactual economy’s automation intensity is set to match the labor

share of 1980. The labor share in 1980 was 0.64 ( Bureau of Labor Statistics), and the

associated automation intensity was 0.78.

20



Figure 3: Occupations shares
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Between 1980 and 2010, the automation intensity has risen from 0.78 to 0.9. The impli-

cation of this change in terms of employment and wages is depicted in Figure 4. The left

Figure 4: Decomposition of change in wages and employment
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Note: The red line represents the level of automation in 1980, while the black
line represents the level of automation in 2010.

panel depicts the employment per RS, while the right panel depicts the log wage per RS. The

red line represents the counterfactual economy and the black line the benchmark economy.

The shift from the red line to the black line represents the reduction in employment and

wages due to automation between 1980 and 2010. Automation has decreased the average

labor income by 27% in this period of time. It implies that automation machines are taking
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over human labor. This is due to two major reasons. The first reason is that automation

can shorten the time it takes to complete a task, compared to humans. The second reason

is that automation is a less expensive option than hiring humans for specific tasks.

The decrease in employment and wages is divided into two effects: the direct effect and

the cross-occupation spillovers. The grey area represents the direct effect, and the formula,

as mentioned in Propositions 4 and 5 , is Ωi
1−ηidηi. The magnitude of the direct effect is

positively correlated with the RS.

The red area represents the shift in employment and wages caused by cross-occupation

spillovers. As shown in Propositions 4 and 5, the magnitude of the cross-occupation spillover

is ΩiΘSR in the short run, and ΩiΘLR in the long run. Unlike the direct effect, the magnitude

of the spillovers is negatively correlated to RS. This is because Ωi decreases with RS. Ωi

measures the marginal effect of labor productivity change relative to capital productivity on

employment and wages. Cross-occupation spillovers account for 62% of the overall change

in wages and employment. In Appendix D, I calculate the equilibrium of the benchmark

economy and simulate the counterfactual economy when the production function in (3) is

a CES rather than a Cobb Douglas production function. Although the magnitude of the

spillover is positively related to the substitution elasticity, the main idea prevails in the sense

that automation in routine occupations reduces both employment and wages in non-routine

occupations.

Figure 5 depicts the spillovers per RS deciles. The spillover for a given decile is calculated

as the percentage change in labor income on the other deciles from 1980 to 2010, as a

result of increased automation in the considered decile. The spillovers range from 0.75

to 2.04%. Between 1980 and 2010, the increase in automation in the 10% most routine-

intensive occupations reduced average labor income by 2.04% in the 90% least routine-

intensive occupations. Similarly, automation of the 10% least routine-intensive occupations

has reduced the average labor income of the 90% of the most routine-intensive occupations

by 0.75%. The spillovers from routine-intensive occupations are the most significant in terms
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Figure 5: Spillovers per RS deciles
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Note: The spillover for a given decile is calcu-
lated as the percentage change in labor income
on the other deciles from 1980 to 2010, as a re-
sult of increased automation in the decile under
consideration.

of magnitude. As a result, ongoing computerization and robotization in routine occupations

significantly reduces wages and employment in non-routine occupations.

It is worth noting that non-routine occupations have a high dispersion of labor income

because they include both abstract occupations like managers and professionals and manual

occupations like cleaning services. The latter have lower labor income. Cross-occupation

spillovers imply that, while automation is slow in these occupations, automation in routine

occupations reduces their labor income.

Automation does not reduce employment uniformly across occupations. The decline is

more pronounced in routine-intensive occupations. Thus, automation explains a portion

of the decline in employment share in routine-intensive occupations relative to non routine

occupations, as shown by the data in Figure 1. Indeed, Figure 6 depicts the occupations

employment shares in the benchmark economy (black line) and the counterfactual economy

(red line). The gradient of the employment share increases in absolute value with automa-

tion. This demonstrates that the intensity of automation reduces the employment share in
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routine-intensive occupations relative to non-routine occupations. This finding supports the

Figure 6: Employment share and Automation
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notion that automation is a skill-biased technological change, in the sens that demand for

skilled labor rises relative to demand for less-skilled labor.

It is important however to note that, while automation will eliminate some jobs, it will

also create new ones. Acemoglu and Restrepo (2018b) have documented the emergence of

new job titles as a result of automation’s ability to generate new jobs.

3.4. Automation and Inequality of Labor Income

The right panel in Figure 7 depicts the Lorenz curves of the benchmark and the coun-

terfactual economies. The benchmark that corresponds to a higher level of automation has

the greater level of labor income inequality in comparison to the counterfactual economy.

Figure 7’s left panel depicts the Gini coefficient of the labor income level with respect

to automation intensity. The value of 0.78 corresponds to the automation intensity in 1980,

and the value of 0.9 corresponds to the automation intensity in 2010. The red diamonds

represent the Gini coefficients computed in the model in 1980 and 2010, and the maroon

diamonds are the corresponding values in the data. The graph shows that automation

increases the labor income inequality between occupations exponentially. Automation has
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Figure 7: Automation and labor income inequality
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Note: The left panel shows the Gini coefficient with respect to automation
intensity. The vertical lines represent the automation intensity of 1980 and
2010. The right panel shows the 1980 Lorenz curve (in red) and the 2010
Lorenz curve (the black line).

contributed to the increase in occupational labor income inequality between 1980 and 2010

by 30.3% .

The distributional effect of automation, according to Proposition 3, does not depend

on the utility function of the household. Only the contribution to income from wages and

employment is affected by the choice of the utility function.

It is worth noting that spillovers exacerbate the fall in average labor income attributable

to automation while reducing the impact of automation on inequality. In other words,

without spillovers, the gradient of the 2010 curve in Figure 1 would have been larger. Indeed,

the capital flow reduces labor income in non automated occupations while moderating the

fall in labor income in automated occupations.

4. Conclusion

Although automation is increasing faster in routine occupations than in abstract and

manual occupations, the consequences go beyond a reduction in employment and wages in

routine occupations only. Indeed, capital mobility across occupations has a significant im-

pact on how labor demand is affected in non-routine occupations when automation increases
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in routine occupations.

When the automation of a given occupation increases, more capital is allocated to it at

the expense of other occupations. As a result, labor demand in these occupations declines,

so do wages and employment. The implication is that increased automation in routine

occupations affects not only the wages and employment of workers in these occupations, but

also workers in non-routine occupations.

I find that between 1980 and 2010 the average labor income has decreased by 27% as a

result of automation. Cross-occupation spillovers account for 62% of this drop. The increase

in automation in the 10% most routine-intensive occupations reduced average labor income

in the 90% least routine-intensive occupations by 2.04% between this time period.

Automation has also contributed to the rise of inequality in the United States. Indeed,

between 1980 and 2010, automation contributed to a 30.3% increase in occupational labor

income inequality.

The paper also shows that automation increases the stock of capital. This increase is

the result of a temporary rise in the interest rate caused by automation. The temporary rise

in interest rates is due to the fact that short-term capital supply is inelastic, whereas long-

term capital supply is completely flexible. Automation raises the stock of capital, causing

the economy to transition from one steady state to another with a higher stock of capital.

The increase in the stock of capital mitigates the long-term effect of automation.

It is worth noting that automation not only eliminates jobs, but also creates new ones.

Workers who are interested in technology and innovation will have more opportunities in

the future job market.
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Appendices

Appendix A. Short Run Comparative Statics

Appendix A.1. Proof of Proposition 1

The following lemma is required to prove Proposition 1.

Lemma 2.
K

li
=

η̄

αi (1− ηi)
ωi

where ωi = wi
R

the relative cost of labor.

Appendix A.2. Proof of Lemma 2

We must first determine the factors demand. Let pi denote the cost of producing one

unit of occupation i, which will be referred to as the price of occupation i. Given the price

distribution, producing Y unit of aggregate output necessitates the demand for occupation

given by

yk =
n∏
i=1

(
αk
αi

pi
pk

)αi
Y (A.1)

The demands for factors are given by the following:

ki =
(wi
R

ηi
1− ηi

)1−ηi
yi (A.2)

li =
(R
wi

1− ηi
ηi

)ηi
yi (A.3)

Next, I use the capital market clearing condition. Because capital can move between occu-

pations, the market clears when total capital supply equals total capital demand.

K =
n∑
i=1

(wi
R

ηi
1− ηi

)1−ηi
yi (A.4)
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K

li
=

∑n
j=1

(
wj
R

ηj
1−ηj

)1−ηj
yj(

R
wi

1−ηi
ηi

)ηi
yi

(A.5)

=
(wi
R

ηi
1− ηi

)
+

n∑
j=1;j 6=i

(wj
R

ηj
1− ηj

)1−ηj(wi
R

ηi
1− ηi

)ηi yj
yi

(A.6)

=
η̄

αi (1− ηi)
ωi (A.7)

Let’s now prove the proposition.

K
η̄

= li
αi(1−ηi)ωi = li

αi

(
ωi

1−ηi

)
= li

αi

(
ki
ηili

)
= ki

αiηi

where the first equality comes from Lemma 2. The third equality comes from the factors

demand ratio.

Appendix A.3. Proof of Proposition 3

Consider the Lemma 2, in which the LHS labor demand is replaced by the labor supply

as a result of market clearing conditions. I then take the log and the derivative with respect

to ηi to get the first two equations, and the derivative with respect to ηj to get the last two

equations.

Appendix B. Steady State

Appendix B.1. Solution of the household’s problem

Let’s denote by ν(li) = τ li. We can deduce the following from theorem 7.14 in Acemoglu

(2009):

e−ν(li)
(
Ce−ν(li)

)−θ
= µ (t) (B.1)

Cν ′ (li) e−ν(li)
(
Ce−ν(li)

)−θ
= w (t)µ (t) (B.2)

ρµ (t)− µ̇ (t) = R (t)µ (t) (B.3)
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Equation (B.3)⇒ µ̇ (t)

µ (t)
= ρ−R (t)

Equations (B.1) and B.2⇒ ν ′ (li) =
w

C
(B.4)

⇒
(
e−ν(li)

)1−θ
=

(
w

ν ′ (li)

)θ
µ (t) (B.5)

⇒ (ν ′ (li))
θ (

e−ν(li)
)1−θ

= wθµ (t) (B.6)

Appendix B.2. Solution of the producer’s problem

I begin by pricing factors at their marginal productivity

R (t) = Aη̄K η̄−1

n∏
i=1

l
αi(1−ηi)
i ⇒

n∏
i=1

l
αi(1−ηi)
i =

R (t)

Aη̄K η̄−1

wi = Aαi (1− ηi)K η̄

∏n
i=1 l

αi(1−ηi)
i

li

The above equation yields the following results:

wi = Aαi (1− ηi)K η̄ R (t)

Aη̄K η̄−1

1

li
⇒ ldi =

αi (1− ηi)R (t)

wiη̄
K

(B.3) gives the steady state interest rate. The labor clearing condition gives the function of

wages and employment for a given stock of capital. The capital stock is determined by the

following equation
n∑
i=1

ζiȧi(t) = 0 (B.7)
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Appendix C. Quantitative Analysis

Proof of equation (28)

The proof uses the aggregate production function in Corollary 1. The marginal product

of labor in occupation i equals wi.

αi (1− ηi)
li

Y = wi ⇒ αiY =
wili

1− ηi
(C.1)

Recall that
∑
αi = 1. The expression Y is obtained by adding the sum of both sides.

Y =
n∑
i=1

wili
1− ηi

(C.2)

Finally, the results are obtained by combining C.1 and C.2.

Appendix D. CES Production Function Case

The purpose of this section is to examine the robustness of the various results in the

main paper when a CES production function is considered. The CES has the advantage of

allowing us to study the consistency of cross-occupation spillovers for more or less substi-

tutable occupations. The cost is that the CES is not tractable, preventing us from obtaining

analytical results. The production function is the following

Y =

(
n∑
i=1

αiy
%
i

) 1
%

(D.1)

The substitution parameter is %. If % = 1, the occupations are perfectly substitutes. The

Cobb-Douglas case is represented by % = 0. If % < 0, then the occupations are gross

complements. The production structure within an occupation remains unchanged from the

main paper. The first result is the variant of Proposition 1 for the CES case.
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Proposition 6. Let K denote the total stock of automating capital available to the producer,
and the production function is given by D.1. The optimal allocation of capital is such that

ki =
α̃iηi
η̃
K (D.2)

where α̃ =
(
αi
p%i

) 1
1−%

, and η̃ =
∑n

i=1 α̃iηi.

The definition of pi is the same as in the main paper. The capital allocation structure

is the same with the CES as it is with the Cobb Douglas. The capital is allocated based on

the shares of the factors. However, the allocation is also affected by occupation prices and

substitution elasticity. When the occupations are substitutable, the producer allocates less

capital to the more costly occupations and vice versa. When occupations are complementary,

however, he does the opposite. Thus, the magnitude of the spillovers is inversely related to

the substitution parameter %. The steady state is characterized by the following system of

equations 
K = 1

ρ

∑
ζi
(
wi
τ
− wili

)
(1)

li = 1
φτ

ln
(
wi
τ

)
(2)

wili
ρK

=
(1−ηi)βi(Kηi l

1−ηi
i )

%∑
ηiβi(Kηi l

1−ηi
i )

% (3)

where si = α̃iηi∑
α̃iηi

, and βi = αi (η
ηi
i (1− ηi)1−ηisηii )

%
.

The first equation is the equation of capital. It is derived from the budget constraints of

households. The second equation represents the labor supply function. The third equation

is the labor demand. I use the same parameter values as in the main paper to analyse

cross-occupation spillovers with a CES production function. In the figures below, the red

line represents the 1980 automation intensity of 0.78. The black line represents an economy

in which the automation intensity has increased to 0.9, but only for occupations with RS

in the heavy grey area. Automation intensity of occupations in the light grey zone is held

constant. So the change in wages in this zone is solely due to spillovers.

Figure D.11 depicts the wage distribution with respect to Frey and Osborne (2013)
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Figure D.8: CES case when occupations are gross substitute % = 0.5

−
.2

0
.2

.4
.6

1
0
0
 x

 l
o
g
 w

a
g
e
s

.2 .4 .6 .8 1
Routine shares

Spillover Direct effect

Initial wages Final wages

estimates of the likelihood of occupation automation. As with RS, the gradient is negative.
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Figure D.9: Cobb-Douglas case % = 0
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Figure D.10: CES case when occupations are gross complement: % = −0.5
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Figure D.11: Occupational wages of 1980 and 2010
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Note: The occupations are represented on the x axis by the level of their risk of
automation estimated by Frey and Osborne (2013). The curves are smoothed
with the stata lowess function with a bandwidth of 0.75.
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